ToorCon TwentyOne speaker: Jatin Kataria

Jatin Kataria is the Principal Research Scientist at Red Balloon Security where he architects defensive technologies for embedded systems. Playing both the role of cat and of mouse at Red Balloon has many suggesting that he may be the first real source of perpetual energy. He tires of n-days easily and is always looking for new and exciting ELF shenanigans, caching complications, and the Fedex guy who lost his engagement ring. Prior to his time at Red Balloon Security, Jatin worked at a number of firms as a systems software developer and earned his Master of Engineering at Columbia University.


Talks

100 Seconds of Solitude: Defeating Cisco Trust Anchor With FPGA Bitstream Shenanigans

First commercially introduced in 2013, Cisco Trust Anchor module(TAm) is a proprietary hardware security module that is used in a wide range of Cisco products, including enterprise routers, switches and firewalls. TAm is the foundational root of trust that underpins all other Cisco security and trustworthy computing mechanisms in such devices. We disclose two 0-day vulnerabilities and show a remotely exploitable attack chain that reliably bypasses Cisco Trust Anchor. We present an in-depth analysis of the TAm, from both theoretical and applied perspectives. We present a series of architectural and practical flaws of TAm, describe theoretical methods of attack against such flaws. Next, we enumerate limitations in current state-of-the-art offensive capabilities that made the design of TAm seem secure. Using Cisco 1001-X series of Trust Anchor enabled routers as a demonstrative platform, we present a detailed analysis of a current implementation of TAm, including results obtained through hardware reverse engineering, Trust Anchor FPGA bitstream analysis, and the reverse engineering of numerous Cisco trustworthy computing mechanisms that depend on TAm. Finally, we present two 0-day vulnerabilities within Cisco IOS and TAm and demonstrate a remotely exploitable attack chain that results in persistent compromise of an up-to-date Cisco router. We discuss the implementation of our TAm bypass, which involves novel methods of reliably manipulating FPGA functionality through bitstream analysis and modification while circumventing the need to perform RTL reconstruction. The use of our methods of manipulation creates numerous possibilities in the exploitation of embedded systems that use FPGAs. While this presentation focuses on the use of our FPGA manipulation techniques in the context of Cisco Trust Anchor, we briefly discuss other uses of our bitstream modification techniques.

Hot Tub Island

Take a boat out to Hot Tub Island! Just meet at the dock next to the event venue to catch a ride out.